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Abstract 

A method for the characterization of coincidence cells 
is proposed for hexagonal crystals. It is based on a 
simple formulation of the orientation relationships for 
coincidence site lattices. Therefore tables of coincidence 
orientation are established for different axial ratios with 
rational values of (c/a) 2. Possible practical cases of 
coincidence are characterized by their comparison with 
these tables. This comparison is preferably performed 
using the description given by a rotation angle of 180 °. 

1. Introduetion 

A new formulation for the generation of coincidence 
site lattices (CSL) has been proposed in a previous 
paper (Bleris & Delavignette, 1981). It was proved 
there for the first time that there is a strict connection 
between Ranganathan's (1966) generating function for 
the cubic system and the rotation matrix describing a 
CSL according to Warrington's (1975) approach. 

The connection between these two approaches has 
the following consequences: 

(a) the generating function may be constructed for a 
CSL described by a rotation matrix; 

(b) the multiple 27 values for a given multiplicity are 
well defined; 

(c) the construction of the CSL matrix for a given 
multiplicity becomes a systematic procedure based on 
three parameters: m, n and a. 

* W o r k  performed under the auspices of  the Association 
C E N - I R E - U L B  and o f  the Association I S M R A - C E N / S C K .  
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The first of these points gave a better insight into the 
original proposition of Ranganathan, the other two 
solved different computational difficulties for the 
construction of the rotation matrix. 

The general ideas of the previous paper will be 
extended here to the hexagonal system, for which the 
generating function, as far as we know, has not yet 
been established. 

2. The general rotation matrix in the hexagonal system 

If P1, P2, P3 are the direction cosines of a direction, the 
general rotation matrix in an orthogonal system has the 
form: 

m 

p2(1 - cos 0) p~p2(1 - cos 0) p~Pa(1 - cos 0) 

+ cos 0 --Pa sin 0 + P2 sin 0 

PIP2(1 -- cos 0) p2(1 -- cos 0) p2P3(1 -- cos 0) 
[qo = 

+ Pa sin 0 + cos 0 - p ~  sin 0 

plpa(1  -- cos 6t) p2Pa(l  -- cos 0) p~(1 -- cos O) 

-- P2 sin 0 + p~ sin 0 + cos 0 

where 0 is the rotation angle. If the direction is 
crystallographic its direction cosines may be expressed 
as a function of integral numbers by introducing the 
Miller indices [uvw] by means of the relations: 

, (1) 

2u - v V / ~  w 
(2) 

P ' - 2 V , ~ '  P 2 - 2 ~ / -  ~ '  P3=P V / ~ '  

where 

d* = u 2 + v 2 - uv + if2 w2 
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and p = c /a  is the hexagonal axial ratio. Using relation 
(2) and by a similarity transformation S -1 R 0 $, where 
S is 

S = a  V/3/2 0 , (4) 

0 p 

we may transform the rotation matrix R 0 into the 
matrix R h = [Ru], which expresses the same rotation 
operation in the hexagonal system. The matrix elements 

integers used for the generation of the coincidence's 
descriptions. Using (7) we easily see that 

2 yn  2 2 V/-X-y mn 
1 - - c o s 0 =  a27 ; s i n 0 =  aX 

COS 0 -- 
x m  2 _ yn  2 

a X  
(8) 

and introducing (8) into (5), we have 

1 
R h = -  ~- 

Y"' [ 
(2u -- v) u --d* (2v - u) u 

+ 2 w p ~ r n n +  xmZ-ynZ]/a - 4 w p ~ m n ] / a  

Yn2 [ - -  
(2u - v) v ~ (2v - u)v yn' 

d* d* 

+ 4 w p ~ m n ] / a  - 2 w p ~ m n  +xm2-yn2]/,a 

-~P 4 7  

2uw02 Yn---~-2 
d* 

+ 2 ( 2 v - u ) p ~ m n ] / n  

yn2 
2w202 d* 

+ xm 2 -yn 2 ]/a 

(9) 

Rtj  have the form: 

(2u -- v) u (l - cos 0) 

w 
+ ~ p s i n  8 +  cos 0 

(2u - v) v (1 - cos 0) 
R h ---- 

2w 
+ ~ p  sin 0 

(2u -- v) w 
(1 -- cos 0) 

vx/3 . 
_ ~ _ _ ~  p - t  sm 0 

uw 
(2v - u) u (1 - cos 0) 7 02 (1 - cos 0) 

2d* 

2w 2v -- u 
3 x / ~  p sin 0 + ~ p sin 0 

(2v - u) v vw 
2d-"'--"-~-- (1 - cos O) ~ 0 2 (1 -- COS 0) 

w 2u - v 
v ~ p s i n a + c o s O  - 3 - - ' x ~ p s i n 0  

(2v - u) ~v w 2 
2d-------------V~- (I - cos 0) ~-~ 02(1 - cos 0) 

uvSi -, . + cos 0 
+ ~ p sm 0 

(5) 
3. An extension of  the generation function for the 

cubic system to the hexagonal  system 

By reference to the form of 2? and 0 for the cubic 
system: 

27 = (m 2 + dn2)/a, tan = -  V ~ ,  (6) 
m 

we shall seek expressions of the type: 

( 0 )  n j ~ ,  
X -  ( x m  2 + yn)2/a, tan = - -  (7) 

m 

where the parameters x, y will be determined in such a 
way that the matrix elements (5) are rational numbers 
with the common denominator being the integer 2?. The 
parameters m, n and a are, as in the cubic system, 

The following symbolism will be used: 

1 1 
R h = [ R u ] = - - ~ [ r u ] = - ~ [ r * / a ] .  (10) 

From (3) it is obvious that for p = 1, d* is an integer. 
The following values: 

x = 3, y = U 2 "4- 13 2 - -  U/3 + W 2 (11) 

eliminate the non-integral parts of (9). Then the 
rotation matrix takes the general form (10), where r~ 
are integers, a has the same meaning as in the cubic 
system and 

~w= [3m 2 + ( U  2 +/32 _ lg/3 + wE)nE]/ct. (12) 

For the case p 4= 1, in order to describe ideal CSL's 
in any hexagonal system, the axial ratio should obey 
the following relation: 

p2 = ~.l/p, (13a) 

(fl, v) ~ 1,t ( lab) 

where g and v are integers. These new parameters will 
be introduced in (5). The d* expression (3) is 
transformed into 

d = ( u  2 d - / . ) 2  _ / / / 3 )  p .4_ w 2 g = d* v, (14) 

where d is an integer. Using (14) and choosing x = 3~t, 
y = d, we have for the elements r~ (10) integral 

+ (p,v) - 1 means that the greatest common divisor of g and v is 
1. 
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expressions, and 2" takes the form 

2"=  (3/~m 2 + dnZ)/a. (15) 

We have already seen that there is a quadratic 
expression of the multiplicity 2", as for the cubic system 
which transforms the general rotation matrix of the 
hexagonal system in a rotation matrix with integral 
elements times 2"-~. The existence of a generating 
function such as (15) for the hexagonal system does not 
ensure the unique character of the decomposition of 2" 
in a quadratic expression. We shall treat this problem in 
the next paragraph. 

4. The application of  Warrington's condition 

Let the matrix (5) describe a CSL rotation operation. 
Then this matrix should be of the form [q = (1/27)[rij], 
where r~j are integral expressions, without a common 
factor, and 2" is the corresponding multiplicity. In such 

where the r u should be integers without any common 
factor in order that the matrix B h = (1/2")[rij] describes 
a CSL. 

Let us consider first the case p = 1, d* = d. In this 
case the values of the nine products 12dru, where d is 
the integral number (14), should be integers for every i, 
j = 1, 2, 3. We may easily see that the only non-obvious 
integral expressions are the square roots: 

V / 3 2 " - S ;  V / ~ - + S ;  V / ~ ,  (18) 

which means there must be relations of the form 

( 3 2 " - S ) ( S + 2 " ) = 3 d z 2 ;  3 2 " - S = d z  '2, (19) 

where z and z'  are integers. The substitutions 

3 2 ; -  S = f dn2; 27 + S = f 3 m  2, (20) 

where m, n, d are integers and f is an integer without 
square factors, obey the relation (19) and by intro- 
ducing this substitution into r u we have: 

I I(2u - v )  un  z + 2 w m n  + 3m 2 - d n 2 l f / 4  

[ r i f  t = [(2u - v ) v n  2 + 4 w m n l f / 4  

[(2u - v ) w n  2 - 3 v m n l f / 4  

[(2v - u ) u n  2 - 4 w m n l  f / 4  

[(2v - u ) v n  2 - 2 w m n  + 3m 2 - d n 2 1 f  /4  

[(2v - u) wn 2 + 3 u m n l f / 4  

] 
[2uwn 2 + 2(2v - u ) m n l f / 4  l 

J 12vwn 2 - 2(2u - v) toni f / 4  

[2wZn 2 + 3m ~ _ d n 2 1 f / 4  

(21) 

a matrix the trigonometric functions may be expressed 
a s  

3 2 " -  S 
1 - cos 0 = ~ (16a) 

22" 

S - 2 7  
cos 0 - - -  (16b) 

227 

( 3 2 " -  S )  1/2 ( 2 7  + S )  1/2 

sin O= (16c) 
22' 

where S = rll  + r22 + r33. These relations introduced 
into rotation matrix (5) transform their elements into 
expressions: 

and 

27-- f (3m 2 + dn2). 
4 

The factor f / 4  is eliminated in a similar way as 
previously presented (Bleris & Delavignette, 1981), the 
rotation matrix takes the form (10): 

1 
B = -  [r~/a] and 27 = (3m 2 + dn2)/a (22) 

2; 

and a has the usual meaning. 
For the case p 4= 1 we introduce the integral 

expression of d from (14). Then the square-root 
expressions (18) are transformed and contain the factor 

I 
R h = - ~ -  

- 3 ~ -  S 3 E -  S 3 2 ~ -  S 
(2u - v) u (2v - u) u - -  u w p  z - -  

4d* 4d* 2d* 

(3Z- S) u2 (Z + S) ~/2 S - Z 
+ w p  2V,~-  ~ + 2 - wp 

3 Z -  S 
(2u - v) v - -  

4d* 

+ wp 
(3Z- S) ~/2 (Z + S) ~/2 

3 .~ - -  S 
(2u -- v) w - -  

4d* 

-- v p - '  V/3  
(32"- S) uz (Z + S) '/2 

4v:~ 

(327- S) u2 (Z + S) ~/2 

3v~ 

3 2 -  S 
(2v - u) v - -  

4d* 

- wp  
(327 - S)  1'2 ( Z  + S)  1'2 

23v~ 

+ (2v - u ) p  

3 2 7 - S  
(2v -- u) w - -  

4d* 

+ uP -~ V ~ - ( 3 Z -  S)  ~/z (27 + S )  ~/2 

"v~ 

3 2 7 -  S 
v w p  2 - -  

2d* 

(32"- S) ~:2 (Z + S) ~:2 

2av/~ 

S - Z' ( 3 Z  - S)  ~2 ( Z  + S)  ~;2 
+ -  - (2u - v )p  

2 2v5~ 

w2~2 3 Z ' -  S 
Y 

2d* 

S - S  
+ - -  

2 

(17) 
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/t. The following substitutions are necessary and 
sufficient: 

3 1 -  S = d n 2 f ;  I + S = 3#m2f. (23) 

In this case we have 

S* 1 
S - - - -  (3/~m 2+dn2) ;  

a 

3/2m 2 -- dn 2 0 n A~~a/-d-' 
0 or tan - (24) c o s  

3/~m 2 + d n  2 2 m 

and the matrix elements become 

dl'12)/a for a convenient value of a. If 0o is the 
corresponding rotation angle there are eleven other 
angles 0 i which correspond to other descriptions of the 
same CSL. The angle 0 0 could be the smallest one 
between the twelve descriptions if 

cos 2 00/2 > cos 2 0 /2 ,  i = 1, . . . ,  11. (27) 

Let R o be the matrix which corresponds to the m, n and 
d data. The application of the twelve symmetry 
elements (see for example Hag6ge, Nouet & 
Delavignette, 1980) to the R 0 gives the following 

[rlj] = 

[(u 2 v-  v z v -  w2~)n 2 

+ 2 w # m n  + 3 # m 2 ] / a  

o r  

[(2u - v) urn 2 

+ 2 w l t m n  + 3 # m 2 - d n 2 1 / a  

[ (2u - v) vvn 2 

+ 4 w l l m n l / a  

[(2v - u) urn  2 

- 4 w a m n l / a  

[ ( / ) 2  V - -  U 2 I , ' - -  W 2 f l )  t / 2  

-- 2 w l t m n  + 31~m2]/a 

or  

[(2v - u) vvn 2 

- 2w/~mn + 3/trn 2 - dn2]/a 

[ (2u  - v) wvrl 2 [(2v - u) wvn 2 

- 3 v v m n l / a  + 3uvmnl / Ia  

- -  

[ 2 u w f l n  2 

+ 2 (2v  - -  u ) # m n ] / a  

[ 2 v w a n  z 

- 2 (2u  - ,;) # m n ] / a  

[(w2a- u 2 v -  v 2 v + uvv)n 2 

+ 31~m2]/a 

o r  

(2w2 fln 2 

+ 3 # m  2 -- dnZ) /a  

(25) 

5. The parameter 

Possible values for the parameter a are determined in 
the Appendix on the basis of numerical properties of 
the nine terms of the rotation matrix. It is shown that a 
is of the following form: 

a = a I k, (26) 

where a t = 1, 3, 4 or 12; k is any factor of the product 
#v. 

All values of the parameter a are not determined, but 
(26) defines the form the parameter a must obey. 
Therefore all the values of a are obtained by selecting 
those values of the form (26) that give to terms of the 
rotation matrix (25) integral values, relatively prime. 

6. The smallest rotation angle description 

Suppose that for a given multiplicity I 0 the numbers m, 
n and d have been found such that Io  = (3am 2 + 

transformations of the trace S of the matrix R0: 

S I = t i t  + r22 + r3 f i  $ 2  = - r 1 2  + r21 + r22 + r33; 

S (  = - r  I 1 - r22 + r33; $ 5  = r12 - r21 - r22 + r33; 

S ?  = r12 + r21 - r33; S 8  = - - r l l  + r21 + r22 - r33; 

S l o  = - r 1 2  - r21 - r33; S i i  = r l l  - -  r21 --  r22 --  r33; 

S 3 = - - r l l  - -  r12 + r l l  + r33; 

S 6 = r " + r t z - r z ' + r " ;  ( 2 8 )  

S 9 = - - r l l  - -  r12 + r22 - r33; 

S I 2  = r l l  + r12 - r22 - r33. 

The relations (28) are functions of the m, n and d 
values, so we may introduce them into (27) by taking 
into account the expression 

( O ) S +  31um2 + dn  2 
c°s2 = 4 1  ' (29) 

which may  be easily deduced from (16b). 
From the eleven different inequalities which (29), 

(28) and (27) imply, the following independent in- 
equalities must be fulfilled in order that the description 
R 0 is the description with the smallest angle: 

m w m u m 2u - v 
--> ; -->--; -->--. (30) 
n 2V -3 n 3p n 2V P 
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7. The 180 ° rotation angle description 

From (24) it is obvious that m = 0 (n = 1) implies 0 = 
180 °. When these values are introduced into the matrix 
elements (25), the rotation matrix becomes 

~ ( u  2 v - v 2 v - w 2 ~ ) / a  ( 2 v  - u ) u v / t t  2 u w u / n  

1 |  c2,-v~vv/,, cv'v-,'v-w'~)/, 2,,w~/,, I (31) R,~ o = ~: 

- L_ ( 2 u  - v )  w v l a  (2t ,  - u )  w v l a  ( w  2 tJ - u2  v - t '2 v + u r v ) l a  

and the 27 expression takes the form 

27 = [(u 2 + v 2 - uv) v + w 2 lu]/a = d/a. (32) 

From (31) and (32) we see the well known property 
that the 180 ° description around the [uv0] directions is 
independent of the hexagonal axial ratio c/a. 

8. Systematic generation of tables of CSL's 

The method presented for the generation of CSL's in 
the cubic system is applicable to particular hexagonal 
systems without change: relations (24) are used, 
maximum m and n values are determined, authorized a 
values are calculated and the tables are generated for 
particular ~t and v values (particular c/a values), the 
selection rules introduced for the cubic system are 
replaced here by compatibility conditions on the r u 
elements and the d value (they must be integers), which 
is a more time consuming approach than for the cubic 
system. 

This generation method gives all the descriptions of 
all the CSL's corresponding to a particular multiplicity 
Z but does not differentiate all different CSL's having 
the same multiplicity. Moreover, their detection on the 
form of the rotation matrix is not obvious, in contrast 
to the cubic case. Therefore every description is 
transformed into its twelve equivalent descriptions 
using the symmetry-element rotation matrices and 
compared to the other generated descriptions, allowing 
a final determination of all existing CSL's. 

An establishment of tables of CSL's on this basis for 
c/a = ~ and c/a = 1 confirmed the already 
published tables by Warrington (1975) and by Hag~ge, 
Nouet & Delavignette (1980). Tables of coincidence 
have been published more recently for twenty-two 
different axial ratios (Bonnet, Cousineau & War- 
rington, 1981), in the range of the hexagonal close- 
packed metals (Be, Ti, a-Zr and Mg), also for less 
densely packed metals (Zn and Cd), and for graphite. It 
is an interesting approach for the determination of 
coincidence grain boundaries in hexagonal structures 
based on the concept of near-coincidence, which is 
similar to the present approach, although we insisted 
more on the comparison with ideal models, similar to 
that which has been developed for cubic crystals. For 
the range 12/5 < (c/a) 2 <_ 27/10 and 27 _< 25 we found 
fifteen coincidences which are not mentioned by 
Bonnet, Cousineau & Warrington (1981). 

It is evident that all tables established for different 
axial ratios contain common CSL's for rotations 
around the [001] axis (or 180 ° rotations around [uv0]), 
since these are independent of the axial ratio. These are 
the multiplicities 2; = 7, 13, 19, 31, 37, 43, 49, etc. 

From any predetermined axial ratio, expressed in the 
fractional form lu/v = c2 /a  2, the formulation presented 
here allows a rapid determination of all ideal existing 
CSL's. Such an idealized approach is essential for the 
characterization of a grain boundary. The form of the 
formulation (the 27 expression is a function of p and v) 
indicates that the lowest multiplicities 2: in all axial 
ratios will appear for the lowest p and v values. This 
statement is evident, and easily deduced from the CSL 
concept: only special axial ratios for low ~ and v values 
give rise to three-dimensional coincidence lattices of 
low multiplicities. This is also confirmed by the 
calculations. 

9. Characterization of a grain boundary 

No practical systematic analyses of grain boundaries 
(or bicrystals) in terms of CSL's have been presented 
up till now. This is essentially due to the difficulty in 
presenting an idealized model of a CSL, and to the time 
consuming procedure for the determination of ideal 
CSL's for a large variety of c/a values. The approach 
of Bonnet, Cousineau & Warrington (1981) is a first 
attempt in that direction, but it does not present a 
completely developed method for systematically 
characterizing CSL's in hexagonal structures. Its 
fundamental interest is to have presented for the first 
time a large variety of CSL's for different c/a values, in 
spite of some missing values. It also presents a way of 
characterizing coincidences by the determination of 
near coincident cells. 

We do not suggest approaching the problem first by 
defining a 'best' axial ratio approximation for a 
particular material, but we will show that dif ferent/a/v 
ratios may be competitively considered for describing 
the same material. 

Considering the hexagonal compact metals, such as 
a-Ti, a-Zr, Re, a-Co or Mg, characterized by an axial 
ratio around 1.6 or close to the lU/V values of 5/2 or 
8/3, it is clear that any of these two ratios might give 
rise to possible approximative CSL's. It is clear also 
that a significant deviation of this /.t/v value is of no 
physical meaning. Therefore different tables of CSL's 
will be established for different tu/v values in the 
neighbourhood of these ratios. Restricting ourselves to 
deviations of/u/v of +10% (i.e. deviations of c/a of 
+5%) and considering CSL's with lower multiplicities 
than 27 = 21 (higher multiplicities have a limited 
physical meaning), it has been verified that only 11 
different lu/v values give rise to possible CSL's 
(neglecting of course the trivial cases independent of 
the #Iv value). It is therefore concluded that the CSL's 
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Table 1. Rotation axes of all CSL's in the 180 ° description with 2; < 20 for hexagonal crystals with 1.5 < 
c/a < 1.7 

[ , , / , , ~  7 9 10 11 12 13 14 15 16 17 18 19 20 
c / a  

! 
3 1 0  4 1 0  5 2 0  

any 5 1 0  7 2 0  8 1 0  
I 

1.55 12/5 211  4 2 1  201  101 301  
8 4 5  4 2 5  6 0 5  1205 4 0 5  

I 
2 12 

1.56 39/16 26138 

21 1 
1.57 27/11 18911 

1.58 

1.60 18/7 

1.61 13/5 

1.62 

101 102  2 1 2  2 1 3  
311 

a 5 0 2  501  1053 1052 
5/2 . . . .  

211  201  3 0 2  
b 1056 5 0 4  3 1 2  5 0 3  

I 

211  421  
1267 6 3 7  

a 

21/8 

b 

1.63 8/3 

1-64 27/10 

1.66 11/4 

14/5 

2 1 2  3 0 2  2 1 4  3 0 4  
1474 7 0 4  1472 7 0 2  

101 
1305 

. . . . . . . . .  r . . . . . . .  1 . . . . . . . .  T . . . . . . . .  1 . . . . . . . .  - i -  . . . . . .  $ . . . . . . . .  - i  . . . . . . . . .  ~ . . . . . . .  - i  . . . . . . . . . . . . . . . . .  4. . . . . . . . .  4 . . . . . . . .  

211  
1478 

201  101 2 0 3  211  4 2 3  
4 0 3  8 0 3  4 0 1  1689 8 4 3  

21 1 
18910 

102  2 1 2  1 01 3 0 2  
3 1 2  

1102 22116 1104 1106 

201 
705  

existing within these two limits on g/v and on 2; are 
given by Table 1 in their 180 ° rotation description. 
There are 40, which could actually be considered as 18 
different CSL's, since for several cases different 
multiplicities describe 180 ° rotations around the same 
rotation axis for different p, v values, as for example 
rotations around [211]. There is no CSL in these limits 
which has no 180 ° rotation description. 

The following steps will be considered in a grain 
boundary analysis: 

(1) from a bicrystal calculate its 180 ° rotation 
description; if this does not exist, it is doubtful that it is 
a coincidence grain boundary: 

(2) determine its exact rotation axis (180 ° ) using 
Table 1; 

(3) determine the corresponding p and v values; 
(4) determine the grain boundary plane and com- 

pare the lattice constants for the material (for its c/a 
value) and for the corresponding ideal CSL (for the 
corresponding p and v values); 

(5) verify that the misfit in point (4) is accom- 
modated by misfit dislocations; 

(6) the deviation of the ideal CSL relationship is 
accommodated by intrinsic boundary dislocations, 
which may be analysed in terms of a tilt component 
and a twist component. 

Practically, the determination is considerably 
simplified by using the stereographic projection of all 
180 ° rotation axes in a reference triangle, Fig. I. The 
corresponding axial ratios only are mentioned in Table 
1. 

10. Presence of  at least one 180 ° description 

Tables of CSL's corresponding to more than 200 
different p and v values have been established in all their 
equivalent descriptions. The property established by 
Friedel (1926), that a twin always has at least one 
description of the type symmetry plane or binary axis, 
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means that special attention has been paid to the 180 ° 
rotation description (considering lattices and not 
structures and taking into account that the CSL 
concept is a generalization of the twin concept). In our 
determinations, most of the CSL's  for which 2' _< 50 
have at least one 180 ° description. There is one 
exception for the special case lu/v = 1 already analysed 
and for which out of the 99 CSL's  for which 27 < 50, 
there are 20 CSL's  with no 180 ° description. 

11. Conclusion 

The expressions (24) and the form of the rotation 
matrix (25) are simple tools for the rapid and simple 
automatic calculation of tables of CSL in the hexagonal 
system. Their systematic use for the calculation of 
CSL's  for a large number of Idly values has shown that 
it is possible, for the hexagonal crystals, to establish 
complete tables of CSL, for any particular material 
within pre-established deviations of the axial ratio c / a  

and up to a maximum 27 value. The hexagonal case 
may therefore be treated in a similar way to the cubic 
case. 

The description using a rotation angle of 180 °, if 
present, is an easy approach to the coincidence, since 
this may  be visually presented by the projection of its 
rotation axis in the reference stereographic triangle. 
Indeed, when, for a practical bicrystal, a rotation 
description exists with an angle close enough to 180 °, it 
is a first criterion for the existence of a coincidence. If 
moreover the rotation axis transposed on the reference 
triangle is close enough to a rotation axis of a 
coincidence, the determination is complete. It may then 
be quantified by the matrix product of these experi- 
mental and tabulated matrices which may be a small- 
angle rotation matrix. 

12101 

14.7.2 520 
10.5.2 ]5 1"9 

421 ]7 310 ," 
84317~9 !712, 720 

211S r8 ,~!;0 

9J'119171513201 311 510 
2124231831213151711209 [9 

213 " ~9 810 2~¢ ~712171317 1"817 19 1"9 

304 702 
10011 10220.3405101 ..302 - 2.0.1 _ 3QI. 4.01 II001 

1~11417191915 1613203 913710 17 19 I714 lrh 
I1 1 0 9 2 0 1 3  187 17 16 181 

17 1519 

Fig. 1. Stereographic projection in the reference triangle of all the 
180 ° rotation axes defining a CSL and mentioned in Table 1 (the 
corresponding axial ratios are not reproduced on the projection). 
S = 20, 1.5 < c/a < 1.7. Rotation axes and S are given. The 
groups of points for which no Miller indices are given have 
different indices for different c/a ratios; these are given in Table 1. 

A P P E N D I X  

Possible values for the parameter oc 

It is not the purpose here to determine all the values, 
but only possible values, for the parameter  a, excluding 
any other form for this parameter.  In fact we shall 
prove that a may be a = a i k, where a i = 1, 3, 4 or 1 2 
and k is any factor of the product pv. 

Since a is a common factor of the nine elements r.*. tj 
and the 27" expression (24), we shall treat the problem 
looking at all possible divisors of the 27* which are 
divisors of the r~ elements. We may first see that all the 
r.*. u are homogeneous expressions in m, n variables and 
the same is obvious for the Z' expression, so that one 
must have 

( m , n ) .  1. (A 1) 

Let us consider first the case where the numbers 3prn 2, 
d n  2 are relatively prime: 

(3gm 2, d n  2) . 1. (A  2) 

From the sum S* (S* = a S )  of the diagonal elements 
(25) and the 27* expression we have 

a [ 3 p m  2 + d n 2 t  since Z'* = 3pro 2 + d n  2 (A3) 

a [ 9 p m  2 --  d n  2 since S* = 9pro  2 - d n  2, (A4) 

from which one obtains necessarily a [ 1 2 p m  2 since 27* 
+ S* = 12pm 2, and from (A 1), (A2), (A3) (a~31urn2)t  

one concludes a -- 1, 2 or 4. 
Let us examine the case a = 2. From (A3. A4). it is 

obvious that a [3pm 2 - d n  2 = S *  - 6pm 2 and from the 
elements (25) we may easily deduce that if v = 0(mod 
2) then k = 2, which is a factor of v. If v ~ 0(mod 2) we 
shall show that a i 4= 2. I f a  i is an even number from the 
elements r~*2, r~' 1 we may see that the conditions a i]r* 2 

and ai[r'~l imply 

u - 0 ( m o d 2 )  v = 0 ( m o d 2 )  and w = l ( m o d 2 ) .  

(,45) 

Since a i may not divide one of the numbers (A2), one 
concludes that neither m nor n may be an even number. 

Taking into account that the square of an odd 
number is of the type l (mod 8), the following con- 
ditions may be deduced using (A5): 

rl* 1 -- (u 2 -- v 2) vn 2 --  O(mod 4) - ,  r l*  l ~ O(mod 4) 

r* 2 -- (v 2 -- u 2) vn 2 --  O(mod 4) -,  r* 2 ---- O(mod 4) 
(A6) 

r~l + v v n ( w n  + 3m) -- 0(mod 4) --, r*~ -= 0(mod 4) 

r* 2 - u v n ( w n  + 3m) - 0(mod 4) -,  r~' 2 - 0(mod 4), 

and all the other elements (25) are obviously of the type 

t p [ q  means q - 0(mod p) and p~q means q ~ 0(mod p). 
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0 (mod  4). On the other hand:  

Z,* = 3t im 2 + drt 2 

= 3 g ( 8 p  + 1) + d(8p  + 1) 

= 4 [n  + /1(2p  + 1)] - 0(rood 4) 

[where (8p + 1) means  'a  multiple of  p plus one'],  
which implies a i = 4. 

Finally when the condition (A2) is fulfilled, a i may  be 
1 or4. 

Let us now consider the case where the numbers  
3lum z and dn 2 are not relatively prime. The existence of  
a c o m m o n  factor  m a y  be obtained f rom one or more of  
the following cases (a last case is excluded according to 
the relation A 1): 

(i) (3, d ) .  3 (iv) (3, n) + 3 

(ii) (fl, d ) .  q (v) (/~, n ) .  p 

(iii) (m, d) ~ t q, p,  t 4: t. 

(A7) 

We  shall examine every condition (31) as an indepen- 
dent  one. 

(i) (3,d) ~ 3. Since 3ld and 3 should divide r* 3 we 
have  312w 2/~n 2 which means  3 I w, then we have 

31u 2 + v 2 -  uv (A8) 

or  3Iv. The last condition leads to the fact  k = 3 and in 
par t icular  this k value is a factor  of  v. The condition 
(A8) implies 31(u + v) 2 - 3uv f rom which we have u + 
v - 0 (mod  3). On the other  hand,  2u - v + v + u = 3u 
--- 0 (mod  3) which implies 2u - v - 0 (mod  3) and also 
2v - u - 0 (mod  3), thus the ~ elements are of  the 
form 0 (mod  3) which implies a i = 3. Taking into 
account  the case a i = 4 which is fulfilled for the 
conditions u and v - 0 ( m o d 2 )  and m and n --- 
1 (mod 2) we have that  a i m a y  have the value 12. 

(ii) (~t,d) = q. We shall prove that  k m a y  have the 
value q which in par t icular  is a factor  of/~. Since d = 
0(mod q) and s ince/ lw 2 - 0(mod q) from (14) we have 

u 2 + v 2 - uv = 0(mod q), (A 9) 

taking into account  the condition (13b). For  (A9), if 
(u,v) ¢ 1 then q m a y  be only 3, and k = 3; in par t icular  
3 is a factor  of/~. I f  u and v are not relatively prime 
then k = q if (u,v) = q. 

(iii) (re,d) ~ t. F r o m  the r* 3 element we m a y  see that  
t l2w.  The case t = 2 implies u and v -- 0 (mod  2) (from 
r* 2 and r*1) but since d - 0 (mod  t) we have w - 
0 (mod 2) which is improper ,  o r / t  - 0 (mod  2). The last 
condition implies k = 2. The condition t lw together 
with the condition d - 0 (mod t) implies tl u2 + v 2 - uv 
or t lv. The first of  these two conditions m a y  be fulfilled 
if t = 3 and (u,v) ~ 1 a known value of  a r Any  other 
condition implies the improper  relation (u,v,w) ~ t. The 
case tl v implies k = t as m a y  be easily seen from (25). 

(iv) The condition (3,n) ¢ 3 implies a i = 3 since all 
the matr ix elements become of the form 0(mod 3). 

(v) The condition (/l,n) ~ p implies k = p since all 
* elements become of  the form 0(mod p). the rij 
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Abstract New results 

Previous calculations of the stack structure of TTF and 
TCNQ by Govers [Acta Cryst. (1981), A37, 529-535] are 
corrected for a program error. 

During our calculation of the three-dimensional crystalline 
structure of T T F - T C N Q  (Govers, 1982) we met a 
venomous program error. This error proved important only 
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